using System; using L=Science.Physics.GeneralPhysics; namespace Serway.Chapter14 { /// /// Example10: Torricelli's Law /// An enclosed tank containing a liquid of density \rho has /// a hole in its side at a distance y_1 from the tank's bottom /// (Fig.14.21). The hole is open to the atmosphere, and /// its diameter is much smaller than the diameter of the tank. /// The air above the liquid is maintained at a pressure P. /// Determine the speed of the liquid as it leaves the hole /// when the liquid's level is a distance h above the hole. /// v_1 = \sqrt{2(P-P_0)/\rho + 2gh} /// public class Example10 { public Example10() { } private string result; public string Result { get{return result;} } public void Compute() { L.Density rho = new L.Density(); rho.kgPERmCUBE = 1000.0; L.Fluid water = new L.Fluid(rho); L.Pressure P0 = new L.Pressure(); P0.Pa = 1.013E5; L.Pressure P1 = new L.Pressure(); P1.Pa = 1.2E5; L.Velocity v0 = new L.Velocity(); v0.XVariableQ = true; L.Velocity v1 = new L.Velocity(); L.Length y0 = new L.Length(); y0.m = 1.0; L.Length y1 = new L.Length(); y1.m = 10.0; water.SolveBernoulliEquation(v0,y0,P0,v1,y1,P1); result += v0.ToString()+"\r\n"; result += Convert.ToString(Math.Sqrt(2.0*(P1.Pa-P0.Pa)/rho.kgPERmCUBE + 2.0*L.Constant.AccelerationOfGravity*(y1.m-y0.m))); } } } //14.6219013811474 +/- 0 i +0 +/- 0 j +0 +/- 0 k (m/s) //14.6219013811474