using System; using L=Science.Physics.GeneralPhysics; namespace Serway.Chapter22 { /// /// Example11: Adiabatic Free Expansion - One Last Time /// Let us verify that the macroscopic and microscopic /// approaches to the calculation of entropy lead /// to the same conclusion for the adiabatic free /// expansion of an ideal gas. Suppose that an ideal /// gas expands to four times its initial volume. /// As we have seen for this process, the initial and /// final temperatures are the same. /// (A) Using a macroscopic approach, calculate the entropy /// change for the gas. /// \Delta S = n R ln 4 /// (B) Using statistical considerations, calculate the change /// in entropy for the gas and show that it agrees with the /// answer you obtained in part (A). /// \Delta S = n R ln 4 /// public class Example11 { public Example11() { } private string result; public string Result { get{return result;} } public void Compute() { L.Entropy S = new L.Entropy(); double N = L.Constant.AvogadroConstant; S.NumberOfMicrostates = 4.0; result = Convert.ToString(N*S.JPERK)+"\r\n"; result += Convert.ToString(1.0*L.Constant.UniversalGasConstant*Math.Log(4.0))+"\r\n"; } } } //11.5222063082141 //11.5256513183508